Current view on the functional regulation of the neuronal K+-Cl− cotransporter KCC2
نویسندگان
چکیده
In the mammalian central nervous system (CNS), the inhibitory strength of chloride (Cl(-))-permeable GABAA and glycine receptors (GABAAR and GlyR) depends on the intracellular Cl(-) concentration ([Cl(-)]i). Lowering [Cl(-)]i enhances inhibition, whereas raising [Cl(-)]i facilitates neuronal activity. A neuron's basal level of [Cl(-)]i, as well as its Cl(-) extrusion capacity, is critically dependent on the activity of the electroneutral K(+)-Cl(-) cotransporter KCC2, a member of the SLC12 cation-Cl(-) cotransporter (CCC) family. KCC2 deficiency compromises neuronal migration, formation and the maturation of GABAergic and glutamatergic synaptic connections, and results in network hyperexcitability and seizure activity. Several neurological disorders including multiple epilepsy subtypes, neuropathic pain, and schizophrenia, as well as various insults such as trauma and ischemia, are associated with significant decreases in the Cl(-) extrusion capacity of KCC2 that result in increases of [Cl(-)]i and the subsequent hyperexcitability of neuronal networks. Accordingly, identifying the key upstream molecular mediators governing the functional regulation of KCC2, and modifying these signaling pathways with small molecules, might constitute a novel neurotherapeutic strategy for multiple diseases. Here, we discuss recent advances in the understanding of the mechanisms regulating KCC2 activity, and of the role these mechanisms play in neuronal Cl(-) homeostasis and GABAergic neurotransmission. As KCC2 mediates electroneutral transport, the experimental recording of its activity constitutes an important research challenge; we therefore also, provide an overview of the different methodological approaches utilized to monitor function of KCC2 in both physiological and pathological conditions.
منابع مشابه
BDNF is required for seizure-induced but not developmental up-regulation of KCC2 in the neonatal hippocampus
A robust increase in the functional expression of the neuronal K-Cl cotransporter KCC2 during CNS development is necessary for the emergence of hyperpolarizing ionotropic GABAergic transmission. BDNF-TrkB signaling has been implicated in the developmental up-regulation of KCC2 and, in mature animals, in fast activity-dependent down-regulation of KCC2 function following seizures and trauma. In c...
متن کاملFunctional characterization of the neuronal-specific K-Cl cotransporter: implications for [K+]oregulation.
The neuronal K-Cl cotransporter isoform (KCC2) was functionally expressed in human embryonic kidney (HEK-293) cell lines. Two stably transfected HEK-293 cell lines were prepared: one expressing an epitope-tagged KCC2 (KCC2-22T) and another expressing the unaltered KCC2 (KCC2-9). The KCC2-22T cells produced a glycoprotein of ∼150 kDa that was absent from HEK-293 control cells. The 86Rb influx in...
متن کاملBDNF-induced TrkB activation down-regulates the K+–Cl− cotransporter KCC2 and impairs neuronal Cl− extrusion
Pathophysiological activity and various kinds of traumatic insults are known to have deleterious long-term effects on neuronal Cl- regulation, which can lead to a suppression of fast postsynaptic GABAergic responses. Brain-derived neurotrophic factor (BDNF) increases neuronal excitability through a conjunction of mechanisms that include regulation of the efficacy of GABAergic transmission. Here...
متن کاملActivity-dependent cleavage of the K-Cl cotransporter KCC2 mediated by calcium-activated protease calpain.
The K-Cl cotransporter KCC2 plays a crucial role in neuronal chloride regulation. In mature central neurons, KCC2 is responsible for the low intracellular Cl(-) concentration ([Cl(-)](i)) that forms the basis for hyperpolarizing GABA(A) receptor-mediated responses. Fast changes in KCC2 function and expression have been observed under various physiological and pathophysiological conditions. Here...
متن کاملMechanism of activity-dependent downregulation of the neuron-specific K-Cl cotransporter KCC2.
GABA-mediated fast-hyperpolarizing inhibition depends on extrusion of chloride by the neuron-specific K-Cl cotransporter, KCC2. Here we show that sustained interictal-like activity in hippocampal slices downregulates KCC2 mRNA and protein expression in CA1 pyramidal neurons, which leads to a reduced capacity for neuronal Cl- extrusion. This effect is mediated by endogenous BDNF acting on tyrosi...
متن کامل